Outbreak Investigations: An Introduction

Angela Faust-Becker, MPH
Division of Epidemiology
Alabama Department of Public Health

Sources of Information

- "Steps of an Outbreak Investigation," U.S. Centers for Disease Control and Prevention, www.cdc.gov/excite/classroom/outbreak_steps_htm
- "Investigating an Outbreak," P. Pontones, Indiana State Department of Health, http://www.state.in.us/isdh/bioterrorism/epidemiology.htm
- L. Gordis, <u>Epidemiology</u>, Second Edition, Philadelphia: W.B. Saunders, 2000.

Disease Outbreaks: Recent Examples

- Measles
- Shigella
- E. coli O157:H7
- West Nile Virus

A Combined Effort

- Epidemiologists
- Laboratory workers
- Environmental health specialists
- Healthcare providers
- Local health departments
- State health departments
- Federal agencies
- Public information officers
- The media

The Ten Steps in an Outbreak Investigation

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Define and identify cases
- 5. Describe and orient the data in terms of time, place, person

The Ten Steps in an Outbreak Investigation

- 6. Develop hypotheses
- 7. Evaluate hypotheses
- 8. Refine hypotheses and carry out additional studies
- 9. Implement control & prevention measures
- 10. Communicate findings

Establish the Existence of an Outbreak

- More cases than normally expected in the population at a given time
- Work with area healthcare practitioners, pharmacies, local health department, etc. to determine if observed number is greater than expected

Review Clinical Data and Establish Case Definition

- Review signs and symptoms, onset dates, common exposures, obtain lab results, if any
- Case definition = criteria to decide whether person is part of outbreak - time, place, person - clinical criteria
- Can change during investigation as more information becomes available

Case Classification

- Confirmed: laboratory verification
- Probable: clinical criteria present but w/o lab verification
- Suspected: only some clinical criteria present

Identify/Count Cases and Identify Population At Risk

- Initiate active surveillance
- Use questionnaires to survey hospitals, ERs, clinics, laboratories and known cases
 Administer as soon as possible
 Both cases and controls
- · Review surveillance data

Describe & Analyze Outbreak

- Describe outbreak by
 - -time
 - -place
 - -person
- Plot number of cases by onset date
- Index case: first case of outbreak
- Determine time course and future course, exposure period

Three Types of Outbreak

- Point source
- Continuous common source
- Person-to-person

Point Source Outbreaks

- Single location with all exposed at one time
- All cases occur within one incubation period
- Outbreak stops unless secondary spread
- Epidemic curve has steep upslope, followed by gradual down slope

Continuous Common Source

- Rather than single point, source is common (e.g., water)
- May begin suddenly or gradually
- Curve has gradual or steep upslope, plateau, trickling down slope, and may repeat

Person-to-Person Outbreaks

- Disease is transmitted from person to person
- Secondary cases appear one incubation period after peak of first wave
- Taller successive waves of cases

Key Epidemiological Tools: Spot Maps

- One spot = case
- Population density not reflected

Analytic Epidemiology

- Quantify relationships between exposures and disease
- Approaches
 - -Cohort study
 - -Case-control study

Cohort Studies

- Defined population
- Can contact all in timely manner
- Calculate attack rate
- Calculate risk ratio to determine risk of contracting illness from exposure

Attack Rates

Calculate for those ill and exposed and those ill and not exposed

number of people at risk who develop illness

total number of people x100 at risk

Risk Ratios

attack rate of ill and exposed attack rate of ill, not exposed

>1.0 = increased risk for exposed

1.0 = equal risk

<1.0 = decreased risk for exposed

Case-Control Studies

- Population not defined
- Looks at diseased and nondiseased
- Calculate odds ratio to determine likelihood of contracting illness from exposure

Odds Ratios

Cross multiply and divide

а	b	ad
С	d	bc

>1.0 = increased likelihood

1.0 = same likelihood

<1.0 = decreased likelihood

Selected Control Measures

- · Get the word out to the public
- Post-exposure prophylaxis/treatment
- · Recalling/destroying contaminated
- · Cleaning or closing an establishment
- Education

Conclusion

- Ten key steps in an outbreak investigation

- Prepare for fieldwork
 Establish existence of outbreak
 Verify diagnosis
 Define and identify cases
 Describe and orient data
 Develop hypotheses
 Evaluate hypotheses
 Refine hypotheses
 Implement control & prevention measures
 Communicate findings
- A combined effort involving many professions, fields and disciplines